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Abstract. We solve the fermionic version of the Ising spin glass for arbitrary fillingµ and
temperatureT taking into account replica symmetry breaking. Using a simple exact mapping from
µ to the anisotropy parameterD, we also obtain the solution of theS = 1 Sherrington–Kirkpatrick
model. An analytic expression forT = 0 gives an improved critical value for the first-order phase
transition. We revisit the question of stability against replica-diagonal fluctuations and find that
the appearance of complex eigenvalues of the Almeida–Thouless matrix is not an artefact of the
replica-symmetric approximation.

1. Introduction and mapping of the two models

A direct generalization of the Sherrington–Kirkpatrick (SK) model [1] to include quantum
fluctuations are fermionic spin glasses [2]. They provide a larger class of models, since
the partition functions of all classical spin-glass models can be extracted from them through
the Popov–Fedotov trick [3, 4]. They also allow one to extend standard spin-glass theory to
itinerant systems, to study the influence of spin-glass order on the excitation spectrum [5] and to
investigate the competition of spin-glass order with other kinds of ordering typical of quantum
systems [6]. All these aspects may be relevant to the physics of heavy-fermion compounds.

Another extension of the SK model is theS = 1 spin glass in a crystal field, realized
for example in(Ti1−xVx)2O3 [7]. Both extensions show tricritical behaviour as the chemical
potentialµ (for fermionic spin glasses) or the anisotropy parameterD are varied [7, 8]. A
simple mapping relates the two models, as far as the static properties are concerned.

The fermionic Ising spin glass (ISGf ) is described by the grand canonical Hamiltonian

H = −
∑
i<j

Jij σiσj − µ
∑
i

ni . (1)

The couplingJij is Gaussian distributed around 0 with varianceJ 2. In what follows, we always
setJ = 1. The main difference to the SK spin glass is that spins and occupation numbers
are given in terms of fermionic operators which act on a space with four states per site,|00〉,
| ↑ 0〉, |0 ↓〉, and| ↑↓〉:

σ = a†
↑a↑ − a†

↓a↓ n = a†
↑a↑ + a†

↓a↓. (2)

To obtain the thermodynamic behaviour of the model, we calculate the free energy using
the replica trick [9]. Integrating over the distribution ofJij creates eight-fermion correlations,
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which are decoupled using the Parisi matrix of order parametersQaτ,bτ ′ . For mean-field theory,
we use the static saddle point of this matrix. Details of this calculation can be found in [2,5].

TheS = 1 anisotropic spin-glass or Ghatak–Sherrington (GS) model [7] is represented
by the Hamiltonian

H = −
∑
i<j

JijSizSjz +D
∑
i

S2
iz (3)

whereSz may have the values−1, 0, and 1. It is easy to see that the partition function
corresponding to the Hamiltonian (1) is identical—apart from the constant 1 + exp(−2βµ)—
to the one defined by (3), provided one maps anisotropy and chemical potential according
to

eβD = eβµ + e−βµ. (4)

As a consequence of (4), the thermodynamic properties of both models are directly related.
At T → 0, one may even neglect the last term and setD = µ. Note, however, that there is a
whole class of fermionic correlations that cannot be expressed in terms ofSz and are therefore
unique to the ISGf , because their definition requires a fermionic generating functional. A good
example is the fermion Green function [10]. Additionally, the Heisenberg andXY variants of
the ISGf , since they exhibit quantum dynamics, do not have a direct classical analogue.

In passing, we note that there is another interesting connection between the two models
in addition to the mapping (4) and the above-mentioned Popov–Fedotov method. One could
introduce a repulsive Hubbard-like on-site interactionU to Hamiltonian (1), which would
deplete the doubly occupied states in the limit of infinite strength. In this case, the Hamiltonian
and a mapping similar to (4) would read

H = −
∑
ij

Jij σiσj −
(
µ− U

2

)∑
i

ni +U
∑
i

(
a

†
↑a↑ −

1

2

)(
a

†
↓a↓ −

1

2

)
and

eβD = e−βµ + eβµ−βU . (5)

2. Results at nonzero temperature

It has been known for a long time that the two models under consideration are described by
two mean-field parameters,q(x) and the replica-diagonal saddle-point value,Qaa = q̃ (in the
notation of the ISGf ).

Already from replica-symmetric (RS) calculations, one can locate the second-order critical
line, terminating at the tricritical point at (T = 1

3, D = 0.962 orµ = 0.961). In order to
correctly describe the system below this line, one has to allow for replica symmetry breaking
(RSB). Since only a few results are available for full RSB [6], the first step of the Parisi scheme
(1RSB) [11] can give valuable information. In many cases, it already comes close to the full
solution or allows a good conjecture.

Using the standard form of RSB at the one-step level, we use the order parameters
q1 = q(1) andq2 = q(0). The position of the jump inq is given bym. After integration over
the fermionic fields and some other transformations we obtain the replica-broken free energy

βf = β2J 2

4
((q̃ − 1)2 − (q1− 1)2 +m(q2

1 − q2
2))− βµ−

1

m

∫ G

z2

ln
∫ G

z1

Cm (6)

with

C = cosh
(
βh + βJ

√
q1− q2z1 + βJ

√
q2z2

)
+ cosh(βµ)e−

β2J2

2 (q̃−q1). (7)
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Figure 1. Susceptibilityχ and Edwards–Anderson order parameterq(1) for the ISGf for half-
filling (left) and forµ = 0.5 (right). Solid and dashed curves show the results from the one-step
replica-broken and the RS solutions, respectively.

The mean-field solutions of the model are given by the condition thatf is stationary with
respect tõq,q1,q2, andm. Considerable numerical effort is necessary to solve the resulting self-
consistency equations for these four parameters simultaneously, and for all values of chemical
potential and temperature within the ordered phase. In figure 1 we present a selection of
our results, introducing the susceptibilityχ = β(q̃ − (1− m)q1 − mq2). We compare our
results with results from the RS calculation. Note thatχ in 1RSB is already very close to
the expected exact valueχ = 1 in the ordered phase, especially for temperatures close to the
phase transition.

3. Zero-temperature results

In the limit of vanishing temperature,q = q̃ + O(T ). Additionally,m vanishes asT → 0.
Therefore, for the zero-temperature behaviour of the model, we have to use a new set of
parameters in order to avoid divergences in (6). We replaceβJ (q̃ − q1) by the single-valley
susceptibilityχ andm by aT . Note that althoughm, the size of the ‘lower step’ inq(x),
vanishes with the temperature, RSB still has a profound effect on the system.

In these new variables, the limit of (6) can be written as

f = 1

2
Jχ(q1− 1) +

1

4
Ja(q2

1 − q2
2)− µ−

J

a

∫ G

z2

ln I (8)

whereI is given for the caseµ/J < χ/2 by

I = 1

2
ea
√
q2z2+ 1

2a
2(q1−q2)

(
1 + erf

(√
q2z2 + a(q1− q2)√
q1− q2

√
2

))

+
1

2
e−a
√
q2z2+ 1

2a
2(q1−q2)

(
1 + erf

(
−√q2z2 + a(q1− q2)√

q1− q2

√
2

))
(9)

and for the caseµ/J > χ/2 by

I = 1

2
ea
√
q2z2+ 1

2a
2(q1−q2)

(
1 + erf

(√
q2z2 − (µJ − χ

2 ) + a(q1− q2)√
q1− q2

√
2

))

+
1

2
ea(

µ

J
− χ

2 )

(
erf

(
(
µ

J
− χ

2 )−
√
q2z2√

q1− q2

√
2

)
+ erf

(
(
µ

J
− χ

2 ) +
√
q2z2√

q1− q2

√
2

))

+
1

2
e−a
√
q2z2+ 1

2a
2(q1−q2)

(
1 + erf

(
−√q2z2 − (µJ − χ

2 ) + a(q1− q2)√
q1− q2

√
2

))
.
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Figure 2. Normal (χ ) and single-valley (χ ) susceptibility (left) and spin-glass order parameters
(right) at zero temperature. Solid curves correspond to the replica-broken solution, dashed curves
to the RS one. For each case, the left vertical line indicates the onset of theµ-independent solution
for smallµ, while the right vertical line locates the first-order transition to the paramagnetic regime.

(10)

Again, variation with respect to the order parameters gives four equations describing the
saddle-point solution. We solved these for all chemical potentials within the ordered phase
and present the results forq̃ = q1, χ andχ in figure 2, together with the RS order parameters
for comparison. In RS approximation,χ = χ , which illustrates the importance of RSB.

We also calculated the free energy from (8)–(10) and compared it with the free energy for
the paramagnetic phase,fpara= −2µ, to obtain the first-order phase transition atµt,1 = 0.881,
a slightly lower value than obtained with the RS approximation, which gaveµt,0 = 0.900.

The transition between the two regimes described by (9) and (10) takes place atµ = 0.119,
which is also related to the width of the band gap at half-filling [5,10].

4. RSB in charge correlations

As sections 2 and 3 show, RSB has a profound effect on the low-temperature phase. However,
spin and charge correlations are affected differently. While spin correlations are modified
by RSB within the whole ordered phase (see the susceptibility in figures 1 and 2), charge
correlations remain essentially unchanged by RSB within part of the phase diagram.

The most obvious observable parameter connected to the replica-diagonal order parameter
q̃ is the fillingν. Both are related to all orders of RSB by

q̃ = 1− coth(βµ)(ν − 1). (11)

Zero-temperature results forν are displayed in figure 3. The difference between the broken
and the unbroken solution is largest at the point where the RS value ofν turns constant. Around
µ = 0.7, the 1RSB solution bends around to come close to the RS one and the two solutions
cross. However, the difference stays comparatively small, so for largeµ the filling is virtually
unaffected by RSB. A similar situation appears in the standard spin-glass theory form > 1
component spin glasses. There, in a strong magnetic field two characteristic lines appear, first
the Gabay–Toulouse line [12–14], where RSB appears for the order parameter perpendicular
to the field while it has little effect on the longitudinal order parameter. At a lower temperature,
close to the line found by de Almeida and Thouless (AT), the longitudinal order parameter also
strongly feels RSB. In this context, one may view the charge and spin degrees of freedom to
be ‘orthogonal’ and the chemical potential to correspond to a magnetic field.

For nonzero temperatures, the difference between RS and 1RSB in general is smaller
than forT = 0, as shown in figure 4. The merging of the two curves becomes smoother
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Figure 3. µ-dependence of the filling at zero temperature in the RS and 1RSB approximations.
Forµ < 0.119, both approximations yield a constantν, while the full solution, estimated with the
dashed curve, givesν = 1 only atµ = 0. Note the remarkable drop of the RSB solution to the RS
curve aroundµ = 0.7. After the crossing the two curves stay close together. The inset shows the
difference between the 1RSB and the RS solutions for largeµ.

Figure 4. Filling factor ν as a function of the chemical potential for temperaturesT =
0, 0.05, 0.1, . . . ,0.4. For each pair of curves, the lower one gives the RS solution, the upper
one the 1RSB result. We applied an offset in steps of 0.1 to separate the results for differentT .
Forµ = 0, there is always half-filling. Note that the effect of RSB onν(µ) is significant only in a
intermediate range of chemical potentials and for small temperatures.

with increasing temperature. The effect of broken RS onν is already invisible atT = 0.4 in
figure 4, far below the second-order phase transition (see figure 5).

For the GS model, the results of this section on the filling can be directly translated to the
average number of sites withSz = 0:

q̃ = 〈S2
z 〉 or 〈1− S2

z 〉 = coth(βµ)(ν − 1). (12)



1330 H Feldmann and R Oppermann

Figure 5. Region of complex replica-diagonal AT eigenvalues in the RS approximation. Also
shown is the curve of continuous transitions ending in the tricritcal point.

5. Replica-diagonal stability

The RS solution is unstable against RSB, as shown by AT in [15]. This problem, together with
its well known solution using an ultrametric saddle-point matrix [9], is one of the main reasons
for the enormous theoretical interest in spin glasses over the past decades.

In addition to the eigenvalue that marks the onset of RSB, AT obtained two additional pairs
of eigenvalues which merge in the replica limit. For the SK model, these were positive for all
temperatures and did not pose a problem. In the case of the GS model and the ISGf , however,
the replica-diagonal eigenvalues can become complex, as noted by several authors [5,16–18].

This result is very difficult to interpret. Lage and de Almeida [16] derived another set of
stability conditions and found their condition∂2f/∂q̃2 to be violated at low temperatures, in
a region determined by the ‘crossover line’ of [6]. Mottishaw and Sherrington [17] pointed
out that the system is unstable against RSB and they suspected that the full Parisi solution will
have only real eigenvalues again.

We have numerically evaluated the self-consistency equations from [2] within the ordered
phase and calculated the replica-diagonal eigenvalues. Directly below the second-order phase
transition and at low temperatures, they are real and positive, indicating stability against replica-
diagonal fluctuations. However, in between there is a region extending fromµ = 0 to the
tricritical point, where they have an imaginary part, while the real part remains positive (see
figure 5). At half-filling, the complex eigenvalues occur betweenT = 0.53 and 0.61.

To extend the AT analysis of the replica-diagonal eigenvalues to RSB, we start with the
ansatz for the eigenvector

µ =
({ε(aa)}
{η(ab)}

)
(13)

where the replica indices run froma, b = 1 ton, and only pairs witha < b are considered for
η(ab). Fork-step RSB, the replica-diagonal eigenvector of AT can be generalized to

ε(aa) = α and η(ab) =


β1 if Qab = q1

β2 if Qab = q2

. . .

βk+1 if Qab = qk+1.

(14)
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Figure 6. The grey regions show complex AT eigenvalues in one-step RSB. Dashed boundaries
indicate difficulties in the numerical algorithm. Here, the true boundary may be slightly shifted.

Substituting (14) into the quadratic form

µTGµ with G(ab)(cd) = ∂

∂Qab

∂

∂Qcd
f (15)

yieldsk + 2 replica-diagonal eigenvalues. In the limit ofn→ 0, these eigenvalues can also be
represented as the eigenvalues of a matrix of (much smaller!) sizek + 2:

Mk =



f ′′ ḟ ′1 . . . ḟ ′k+1−2
(1−m1)

ḟ ′1
−2

(1−m1)
f̈11

−2
(1−m1)

f̈1(k+1)
−2

(m1−m2)
ḟ ′2

−2
(m1−m2)

f̈21
−2

(m1−m2)
f̈2(k+1)

...
. . .

...
−2

(m(k−1)−mk) ḟ
′
k

−2
(m(k−1)−mk) f̈k1 . . . −2

(m(k−1)−mk) f̈k(k+1)
−2
mk
ḟ ′(k+1)

−2
mk
f̈(k+1)1 . . . −2

mk
f̈(k+1)(k+1)


. (16)

Here, we have introduced the shorthand notations

f ′′ = ∂2f

∂q̃2
ḟ ′i =

∂

∂qi

∂f

∂q̃
and f̈ij = ∂

∂qi

∂f

∂qj
. (17)

We have carried out the above calculations numerically for 1RSB with the order parameters
presented in section 2. Regions with complex replica-diagonal eigenvalues are shown in
figure 6. Now there appear two of them. Sincef and its derivatives are real, obviously
complex eigenvalues always have to appear in pairs conjugate to each other. Labelling the
three eigenvalues at 1RSB in proper order, we find that in the high-temperature region of figure 6
λ1andλ2 turn complex, while in the low-temperature regionλ2 andλ3 have nonzero imaginary
parts. Therefore, the two regions can be clearly distinguished. The high-temperature region has
approximately the same shape as the one from RS calculations. Its boundary atµ = 0 is given
byT = 0.52 andT = 0.61. This fact is a strong indication that the effect of RSB is small in the
corresponding temperature range and that the occurance of complex AT eigenvalues continues
for arbitrary RSB. Complex eigenvalues thus seem to be a consequence of the replica limit.
Their interpretation as far as stability is concerned remains an open question.
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6. Conclusion

Using the equivalence of the thermodynamic properties of the GS model and the fermionic
quantum Ising spin glass, we simultaneously solved these two models in the first step of the
RS approximation combining analytical and numerical methods. We also obtained theT = 0
limit of these solutions. As expected, the effects of RSB are comparatively large in general,
while the order parameters of charge are almost unchanged by RSB in certain regions of the
ordered phase. Analysing the replica-diagonal AT eigenvalues, we found that the puzzling
complex stability eigenvalues, previously found in RS calculations, also appear in one-step
RSB. They even cover a larger part of the phase diagram. On this basis, we formulated the
conjecture that complex eigenvalues of the stability matrix appear at any order of RSB.
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